Large deviations for intersection local times in critical dimension
نویسنده
چکیده
Let (X t , t ≥ 0) be a continuous time simple random walk on Z d , and let l T (x) be the time spent by (X t , t ≥ 0) on the site x up to time T. We prove a large deviations principle for the q-fold self-intersection local time I T = x∈Z d l T (x) q in the critical dimension d = 2q q−1. When q is integer, we obtain similar results for the intersection local times of q independent simple random walks.
منابع مشابه
Large deviations for self-intersection local times in subcritical dimensions
Let (Xt, t ≥ 0) be a simple symmetric random walk on Z and for any x ∈ Z, let lt(x) be its local time at site x. For any p > 1, we denote by It = ∑ x∈Zd lt(x) p the p-fold self-intersection local times (SILT). Becker and König [6] recently proved a large deviations principle for It for all p > 1 such that p(d − 2/p) < 2. We extend these results to a broader scale of deviations and to the whole ...
متن کاملLarge and moderate deviations for intersection local times
We study the large and moderate deviations for intersection local times generated by, respectively, independent Brownian local times and independent local times of symmetric random walks. Our result in the Brownian case generalizes the large deviation principle achieved in Mansmann (1991) for the L2-norm of Brownian local times, and coincides with the large deviation obtained by Csörgö, Shi and...
متن کاملLarge deviations for local times and intersection local times of fractional Brownian motions and Riemann-Liouville processes
In this paper we prove exact forms of large deviations for local times and intersection local times of fractional Brownian motions and Riemann–Liouville processes. We also show that a fractional Brownian motion and the related Riemann–Liouville process behave like constant multiples of each other with regard to large deviations for their local and intersection local times. As a consequence of o...
متن کاملExponential asymptotics for intersection local times of stable processes and random walks
We study large deviations for intersection local times of p independent d-dimensional symmetric stable processes of index β, under the condition p(d − β) < d. Our approach is based on FeynmanKac type large deviations, moment computations and some techniques from probability in Banach spaces.
متن کاملLarge deviations for the local and intersection local times of fractional Brownian motions
Large deviation principle for the non-linear functionals of non-Markovian models is a challenging subject. A class of such models are Gaussian processes. Among them, the fractional Brownian motions are perhaps the most important processes. In this talk, I will talk about some recent progress achieved in the large deviations for local times and intersection local times of fractional Brownian mot...
متن کامل